Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(7): 4079-4093, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320514

RESUMO

Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2 ]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2 ] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2 ] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2 ] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.


Assuntos
Secas , Triticum , Austrália , Dióxido de Carbono/análise , Grão Comestível/química
2.
J Exp Bot ; 58(2): 177-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17185737

RESUMO

Exotic parents are being used to increase allelic diversity in bread wheat breeding through (i) interspecific hybridization of the ancestral genomes to produce so-called synthetic derived (SYN-DER) wheat, and (ii) crossing with landrace accessions, originating in abiotically stressed environments, that have become isolated from mainstream gene pools. Evaluation of the inherent genetic diversity encompassed by drought-adapted landraces compared with checks using DNA fingerprinting confirmed that some landraces were not only distant from checks but also showed significant diversity among each other. Improvement in performance of SYN-DER lines compared with recurrent parents was not associated with a larger overall investment in root dry weight, but rather an increased partitioning of root mass to deeper soil profiles (between 60 cm and 120 cm) and increased ability to extract moisture from those depths. The best Mexican landraces showed superior ability in terms of water extraction from soil depth, as well as increased concentration of soluble carbohydrates in the stem shortly after anthesis. Although it can be argued that inferring theoretical yield gains from the over-expression of any of these traits is questionable, since compensatory mechanisms may be at work, the fact remains that mechanistic or genetic linkages among physiological traits remain largely un-established. In the meantime, trait information is being used to make strategic crosses based on the theoretical combination of useful stress-adaptive traits with the possibility of realizing additive gene action in selected progeny. Candidates for crossing with elite check cultivars include landraces identified that showed relatively high biomass under drought combined with favourable expression of physiological traits such as stem carbohydrates, water extraction characteristics, and transpiration efficiency.


Assuntos
Adaptação Fisiológica , Desastres , Triticum/genética , Triticum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...